
An EDF-based Swapping Approach to Enhance Support for Asynchronous
Real-Time Traffic over EtherCAT networks

Gaetano Patti, Lucia Lo Bello, Giuliana Alderisi, Orazio Mirabella
Department of Electrical, Electronic and Computer Engineering

University of Catania
Catania, Italy

{gaetano.patti, lucia.lobello, giuliana.alderisi, orazio.mirabella}@dieei.unict.it

Abstract

EtherCAT is a real-time Ethernet protocol for factory
automation applications that enables periodic data
exchange with cycle times of a few microseconds thanks
to the capability to process frames “on-the-fly”.
EtherCAT does not provide efficient mechanisms for
enabling the transmission of asynchronous real-time
data from slave nodes. This paper proposes an EDF-
based Swapping Approach that allows slaves to send
real-time asynchronous traffic over EtherCAT networks
in an efficient way, while maintaining the
interoperability with standard devices.

The paper describes the EDF-based Swapping
Approach and presents a comparative performance
evaluation with both the EtherCAT standard and an
approach in the literature that exploits CAN-Like
arbitration.

1. Introduction

EtherCAT is a Real-Time Ethernet (RTE) protocol
suitable for factory automation applications. It is
included as part of the IEC 61158 standard [1][2], which
defines fieldbus protocols for industrial communications,
and in the IEC 61784 [3] standard, which defines the
RTE Communication Profiles. EtherCAT provides a
daisy-chain topology and a master/slave architecture in
which the master periodically transmits standard
Ethernet frames containing multiple telegrams (called
Type 12 PDUs in the IEC 61158 standard). Slaves read
and/or write data in the telegrams by processing the
frame “on-the-fly”. This solution provides cycle times
lower than one millisecond, e.g., a 1500-byte EtherCAT
frame is processed in about 150 us. The EtherCAT
protocol allows the transmission of both real-time and
non real-time traffic. The periodic traffic is assumed to
be real-time, while asynchronous (i.e., aperiodic) traffic
may have or not have real-time constraints.
Asynchronous real-time traffic is scheduled in the same
way as periodic traffic. The master cyclically sends one
or more EtherCAT frames which contain the telegrams.
On the contrary, asynchronous non real-time traffic is

handled by means of special frames, called mailboxes.
The master sends those frames to the slaves that have
previously signaled the need for asynchronous
transmission. However, the transmission of
asynchronous real-time traffic is not efficient, as it needs
to be scheduled using at least one telegram for each slave
that required transmission, with the result of increasing
the cycle time.

To allow slaves to autonomously transmit
asynchronous traffic, in the literature an approach is
proposed that uses a CAN-Like arbitration scheme to
transmit asynchronous messages in a contended
EtherCAT telegram [10]. The approach requires the
master to send an acknowledgement on message
reception, which allows the slave to remove the
successfully transmitted message from its local queue. In
addition, the approach in [10] assumes that the message
priority is static.

An improvement of [10] is proposed in the work in
[11], which foresees that multiple messages per telegram
can be transmitted, however a master acknowledgment
message is still needed.

This paper proposes a novel approach that allows the
transmission of asynchronous traffic with real-time
constraints over EtherCAT, while maintaining the
interoperability with standard EtherCAT devices. The
approach, here called an EDF-based Swapping approach,
enables the slaves to swap an incoming asynchronous
message based on an Earliest Deadline First algorithm
[15], so that messages with closer absolute deadlines
preempt those with farther ones. No asynchronous
message will be lost due to preemption from other
messages, as the slave that has swapped the incoming
message will be in charge of transmitting it whenever
possible according to the EDF rule.

The goal of the proposed approach is to allow the
slaves transmitting asynchronous real-time data without
significantly increasing the cycle time of periodic real-
time traffic. Moreover, the EDF-based Swapping
approach provides messages with dynamic priorities and,
thanks to the swapping mechanism, eliminates the need
for the slaves to wait for the master acknowledgement

message, thus improving the asynchronous real-time
throughput.

The paper is organized as follows. Section 2 outlines
related works. Section 3 summarizes the EtherCAT
protocol. Section 4 introduces the EDF-based Swapping
approach, while Section 5 presents a comparative
performance assessment through OMNeT++
simulations. Finally, Section 6 concludes the paper and
outlines future work.

2. Related Works

Many studies addressed EtherCAT with the aim of
assessing its performance and proposing improvements.
The work in [4] presents a performance comparison
between EtherCAT and Powerlink in the context of a
coordinated motion control application. In [5] and [6] a
comparison between EtherCAT and PROFINET IRT is
presented, while in [7] the EtherCAT performance with
different topologies is investigated. In [8] a switch that
significantly reduces propagation delays is proposed.

EtherCAT provides a clock synchronization protocol
called Distributed Clocks (DC). The synchronization
accuracy of this protocol, evaluated in [9], is always
better than 1 microsecond.

A limitation of EtherCAT is the limited support
provided to asynchronous traffic, as the protocol was
specifically designed for periodic traffic.

In order to overcome such a limitation, in [10] a
CAN-based arbitrating transmission scheme is proposed,
that allows EtherCAT slaves to transmit asynchronous
real-time data without the need for scheduling those
messages as periodic traffic. In the approach, a new
EtherCAT telegram, containing an asynchronous
message with an assigned priority, is defined. A slave
with a message ready for transmission can “on-the-fly”
replace the content of the telegram with its own, if the
ready message to be transmitted has a higher priority
than the incoming message in the telegram. The process
continues until the asynchronous telegram reaches the
master, which will then notify all the slaves about the
content of the received telegram.

The approach in [10] therefore enables asynchronous
messages transmission without the need for the master to
poll the slaves and avoids scheduling time-constrained
asynchronous messages as periodic data, as this would
entail a bandwidth waste. However, the approach
proposed in [10] has some drawbacks. For instance, as
message priorities are static, under high asynchronous
workloads low priority messages, due to interference
from high priority ones, would experience long delays,
with a potential for starvation for the lowest priority
messages. Another drawback is the need for an
acknowledgement mechanism to notify the slaves about
the message that has been successfully received, so as to
allow the slave that transmitted the message to remove it
from its local queue. The acknowledgment is realized by
the master sending an “ack” telegram that contains a

copy of the latest received message. The need for the
slave to wait for the “ack” prevents the possibility to
embed multiple asynchronous telegrams in an EtherCAT
frame. This problem was overcome by the approach
proposed by the same authors in [11], which augments
the approach in [10] with the capability of embedding
multiple asynchronous messages within a single
telegram. However, the need for acknowledgment still
remains, thus reducing the bandwidth efficiency.

The idea proposed in this paper is inspired by the Slot
Swapping Protocol (SSP) that was presented in [12],
[13], and [14] to interconnect heterogeneous fieldbus
networks through a real-time backbone. In the SSP
protocol, fieldbus gateways are connected according to a
ring topology. The ring is covered uninterruptedly by a
sequence of slots, where each slot carries a message. A
node connected to the backbone maintains a local queue
of messages ordered according to their absolute deadline
(which depends both on arrival time and on the temporal
validity of the message). A node can swap an incoming
message with its own if, and only if, the deadline of the
packet in the local queue is closer than that of the
message that is traversing the node. If this is the case, the
node replaces the ongoing message with its own, and
stores the swapped message in its local queue.

The introduction of an SSP-based approach in
EtherCAT enables dynamic priority for asynchronous
messages, thus overcoming the limitations found in [10]
and [11]. The swapping mechanism also allows to
immediately remove a message from the slave queue and
also provides the capability of embedding multiple
asynchronous telegrams in one EtherCAT frame.

3. EtherCAT Protocol features

EtherCAT [1][2] has a master/slave architecture in
which the master cyclically sends an Ethernet frame to
slaves according to a daisy-chain topology. Slaves read
and/or insert data into PDUs called Type 12 PDUs,
which are processed “on the fly”, i.e., the slaves process
one byte at a time and forward it to the next node. When
the last slave of the chain is reached, the frame is
redirected backward to the master as a response frame
and the cycle ends. This behavior requires that all nodes
be full-duplex devices capable of receiving and
transmitting at the same time.

The Ethernet frame contains the Type 12 frame,
which encapsulates one or several Type 12 PDUs. Fig. 1
shows the EtherCAT frame structure. The Type 12 frame
supports three types of data:

• Type 12 PDUs, for transmitting process data.
• Network variables, for network management

purposes.
• Mailboxes, for transmitting standard IP packets

and non real-time data.
The Type 12 PDU includes a header, which specifies

the address and command for a slave, (i.e., read, write or

read/write), a data field and a Working Counter Field
(WCF) used for error detection.

An important index to evaluate the EtherCAT
performance is the minimum cycle time (TC) [4][5], i.e.,
the minimum time needed to exchange the input/output
data between the master and all the slaves [5], defined as
in formula (1) [4]:

�� � ��� � ��� � �	� � �
� (1)

where
• Tet is the time necessary to transmit the Ethernet

header and Frame Check Sequence (FCS)
fields.

• Tif is the interframe gap, i.e., the time between
the end of frame and the beginning of the next
one.

• Tde is the frame delay, i.e., the time introduced
by each slave for processing the frame.
Assuming that such a delay is the same for all
the slaves, Tde=N×Tsv, where N is the number of
slaves and Tsv is the slave processing time.

• Tec is the time necessary to transmit the Type 12
frame, specified by formula (2) [4]:

��� � ��� �
 � ���� � ���� � ∑ ���

�
��

�� (2)

where Teh is the time necessary to transmit the Type 12
frame header, L is the number of Type 12 PDUs in a
Type12 frame, Tth and Twc represent the transmission
time of the Type 12 PDU header and working counter,
respectively. Finally, Tct is the time to transmit the i-th
Type 12 PDU payload.

Formulas (1) and (2) show that the minimum cycle
time directly depends on both the number of Type 12

PDUs and the length of their payloads. Moreover, the
maximum payload size of the Type 12 frame is 1500
bytes and a large number of Type 12 PDUs entails the
need to use more Ethernet frames, with a consequent
increase of the minimum cycle time.

4. The EDF-based Swapping Approach

The EtherCAT protocol does not allow one or more
slaves to transmit messages in an autonomous way. The
transmission of non real-time traffic is realized through
special Type 12 frames, called mailboxes, but it is up to
the master polling the slaves so as to enable them to
transmit mailboxes.

To allow the slaves to transmit asynchronous traffic,
many solutions can be adopted. For instance, one
solution is to periodically poll the slaves, in order to
determine which slaves have asynchronous data to
transmit. This is accomplished through a single Fieldbus
Memory Management Unit (FMMU), i.e., an entity that
allows a mapping between the slave physical memory
and a portion of a Type 12 PDU, thus providing slaves
with the possibility of reading/writing data in a single
telegram. After collecting the information about the
slaves that have asynchronous data to transmit, the
master schedules a mailbox frame for each of them, thus
significantly increasing the cycle time. Mailboxes are not
suitable for transmitting real-time asynchronous
messages, as there is no way to provide guarantee about
the message delivery time.

Another solution is to handle asynchronous traffic as
periodic traffic using the Type 12 PDU. This option may
be suitable for asynchronous real-time traffic because a
Type 12 PDU is reserved for each slave, thus
guaranteeing transmission. However, this solution has a
drawback, as it reserves a telegram to the potential
transmission of asynchronous data without any guarantee
that there will actually be data to transmit. If no data are
available for transmission, this approach entails an
unnecessary increase of the cycle time and bandwidth
waste.

The new idea proposed in this paper is to introduce a
novel Type 12 PDU, called Async Type 12 PDU, to be
used by slaves for sending asynchronous traffic when
they really need to transmit. The Async Type 12 PDU is
contented between all the slaves that have asynchronous
real-time data to send. Contention is handled according

Fig. 1. EtherCAT frame structure with
telegrams.

Fig. 2. EtherCAT Frame structure with Async Type 12 PDU

to a preemptive policy based on the Earliest Deadline
First (EDF) algorithm [15]. This is possible, as the daisy-
chain topology used in EtherCAT allows for preempting
messages by changing “on-the-fly” the telegram payload
of an incoming frame when it goes through a slave. The
number of Async Type 12 PDUs to be embedded in a
Type 12 frame is set during the configuration phase,
depending on both the constraint on the cycle time and
the asynchronous real-time workload generated and its
constraints, also taking into account the maximum
Ethernet frame payload (1500 bytes).

The frame structure is shown in Fig. 2. The Async
Type 12 PDU contains an Asynchronous PDU (APDU)
which is composed of a header, a payload and, if
required, a padding. The Async Type 12 PDU has fixed
length and its payload is the APDU. The APDU header
fields are the ones listed below, i.e.,

• APDU_DL (6 bytes): the APDU deadline,
which is used to take the swapping decision.

• APDU_ADR (4 bytes): the address of the slave
that has sent the latest message received by the
master.

• APDU_LEN (2 bytes): the length of the APDU
payload.

In order to maintain the coexistence between the
slaves that implement the EDF-based Swapping
Approach and those that implement the EtherCAT
standard, the Async Type 12 PDU header is mapped on
the standard Type 12 Header as specified in Table 1.

The CMD field provides a new value (e.g., 0x0F) that
indicates that the Type 12 PDU must be processed as
asynchronous PDU. The ADR field contains the address
of the slave that has sent the latest message received by
the master.

Table 1. Async Type 12 PDU Fields

Data Field Data Type Value/description

CMD Unsigned8 Command: APDU (0x0F)

IDX Unsigned8 Index

ADR DWORD Slave address of last message

LEN Unsigned11 Length of DATA field

RESERVED Unsigned3 0x00

C Unsigned1 Circulating Frame

NEXT Unsigned1 0 if the last PDU in the frame

IRQ WORD Reserved for future use

DATA OctetString Data

WKC WORD Working Counter

Each APDU has an associated absolute deadline that
depends on the message expiring time.

A slave generating an APDU calculates the absolute
deadline by adding the relative deadline of the message
received by the Application layer to the system time. The
System Time variable is 64 bits long and contains the
nanoseconds elapsed since January 1, 2000 [9]. As the
approach here proposed does not require nanosecond

accuracy, the absolute deadline is expressed in
microseconds.

Due to serial communication, to perform deadline
comparison on-the-fly, the six bytes of the deadlines are
encoded from the most significant byte to the least
significant byte, and their transmission follows the same
order.

The modules implementing the EDF-based Swapping
Protocol are shown in Fig. 3.

Each slave maintains a local queue (Asynchronous
Queue, AQ) of APDUs ordered according to their
absolute deadlines. This is possible, as the EtherCAT
protocol specifies a clock synchronization protocol
called Distributed Clocks (DC)[9][1], that provides a
synchronization accuracy in the order of nanoseconds.

When a slave needs to send an APDU (i.e., a local
message, Mlo, stored in the output buffer Out_Buff) and
is being traversed by an Async Type 12 PDU containing
another APDU (i.e., an incoming message, Min, stored in
the input buffer In_Buff), it can swap the incoming
APDU with the local one according to the EDF rule, i.e.,
if, and only if, Mlo has a closer deadline than Min. In this
case, the slave inserts the swapped APDU in its local
queue according to its deadline.

The comparison works as follows. The i-th byte of the
deadline of the incoming message Min (i.e., the
APDU_DL field of the APDU), Bi,in, for i=0...5, is
compared with the corresponding byte of the APDU_DL
field of the APDU of the local message Mlo, Bi,lo. The
incoming message Min is swapped if, and only if, the
following inequality (3) is true

�
,
� � �
,�� (3)

otherwise Min is forwarded to the next slave.

If a swap occurs, while the local message Mlo is
transmitted to the next slave and removed from the local
queue, the swapped message has to be entirely received
and is then inserted in the local queue according to its
deadline.

The first advantage of this approach is that no
asynchronous message will be lost due to preemption

Fig. 3. Data Link Layer modules for the EDF-
based Swapping approach

from other messages, as the slave that has swapped the
incoming message will be in charge of transmitting it
whenever possible according to the EDF rule.

Moreover, the EDF-based transmission policy
provides messages with dynamic priority, thus
preventing the starvation problems that affect lower
priority messages under fixed priority scheduling.

5. Simulations

In order to evaluate the EDF-based Swapping
approach, a simulator has been developed using the
OMNeT++ framework [16]. The goal of the simulations
is to assess the performance of the EDF-based Swapping
approach and to make a performance comparison with
the EtherCAT standard as far as the transmission of
asynchronous real-time data from the slaves is
concerned. Moreover, a comparison between the EDF-
based Swapping approach and the CAN-Like approach
proposed in [10] is also presented.

As shown in Fig 4, the evaluated scenarios consist of
a single EtherCAT segment with 10 slaves. The master is
directly connected to the first slave and periodically
sends Ethernet frames. In all the simulations, the
periodic real-time workload consists of one 32-byte
telegram sent from each slave every cycle. In these
simulations no mailboxes are used for transmitting real-
time asynchronous traffic, as mailboxes are not able to
support real-time constraints, so they are not suitable for
real-time asynchronous traffic. Moreover, potential
transmission errors are not taken into account, as they
are beyond the scope of this paper. The notation used in

the following part of this Section is shown in Table 2.
Simulation time was 500 ms.

5.1. Performance evaluation of the EDF-based
Swapping Approach

In the first set of simulations, the performance of the
EDF-based Swapping Approach is evaluated by varying
the mean generation interval of asynchronous messages
from all slaves. The asynchronous workload has been
generated using an exponentially distributed random
function with mean λ. Several simulations were run by
varying the number of Async Type 12 PDUs embedded
in each EtherCAT frame.
The performance parameter chosen for this scenario is
the Deadline Miss Ratio (DMR), calculated at the
Application layer of the master and expressed as the
ratio between the number of asynchronous real-time
messages that miss their deadline and the total number of
asynchronous real-time messages generated. Note that in
this paper we are not addressing or applying any
admission control tests, so deadline misses for
asynchronous messages may occur. Late asynchronous
messages, i.e., those that exceed their deadlines, may be
either dropped or not, depending on the application (firm
or soft real-time). In our simulations we decided not to
drop late asynchronous messages, so as to assess the
network behavior under higher workloads.

5.1.1. Simulation 1: DMR assessment by varying the
asynchronous network workload and the number of
Async Type 12 PDUs.

This simulation evaluates the DMR obtained by
varying the network asynchronous workload, while
keeping a constant periodic workload. Simulation
parameters are specified in Table 3.

Symbol Value/range

N 10

SPP 32 bytes

NAPDU from 1 to 7

SAPDU 32 bytes (12 header + 20 payload)

tsv 700 ns

DLAPP 500 us

APPSTART exponential (25 us)

λ from 112.5 us to 1000 us

Table 3. Simulation 1 parameters

The increased number of Async Type 12 PDUs, on
the one hand, provides more room for asynchronous
traffic, on the other hand it increases the EtherCAT
frame length and thus also the minimum cycle time.

The maximum DMR is the highest DMR value
obtained before the network approaches saturation.

Table 4 shows the values of the maximum Deadline
Miss Ratio for asynchronous messages as a function of
the mean message generation period obtained by varying

Data field Symbol

Number of slaves N

Periodic payload size SPP

Number of Async Type 12 PDUs NAPDU

APDU size SAPDU

Slave latency tsv

Application message relative deadline DLAPP

Application start time APPSTART

Async Mean Generation Interval λ

CAN-Like message priority CLPRIO

Table 2. Notation used for simulation
parameters

Fig. 4. Simulated network topology

the number of Async Type 12 PDUs embedded in one
EtherCAT frame for each simulation run.

By increasing the number of Async Type 12 PDUs,
higher workloads can be supported, thus reducing the
maximum DMR values. However, as the second column
in Table 4 shows, this is at the expense of longer cycle
times. As a result, at design time the tradeoff between
the maximum asynchronous workload that can be
supported and the corresponding cycle time value has to
be taken into account.

 Fig. 5 shows the details of the simulation performed
with NAPDU = 1 to show the trend of DMR as a function
of the mean asynchronous messages generation rate
(MGR). For MGR values in the range from 0 to 104
msg/s, no deadline misses were experienced by
asynchronous messages. From MGR = 1 to 1.67 x 104
msg/s the DMR remains below 4%, while for MGR
values higher than 1.67 x 104 msg/s queues start to be
filled up and the network approaches saturation.

Fig. 5. DMR as a function of the mean
message generation rate

These results highlight the ability of the EDF-based
Swapping approach to support time constrained traffic
with varying messages arrival patterns.

5.1.2. Simulation 2: Comparison with the EtherCAT
standard.

The aim of this simulation is to compare the
minimum cycle time obtained by the EtherCAT standard
and by the EDF-based Swapping approach. In Table 5
the simulation parameters are shown.

For the EtherCAT standard, formulas (1) and (2)
allow the minimum cycle time to be obtained, and this
value does not vary with the workload.

 In the EDF-based Swapping approach the same
formulas as EtherCAT are used, but the minimum cycle
time varies with the number of Async Type 12 PDUs.
Therefore, to perform the comparison, we first have to
run simulations with the EDF-based Swapping approach
to know the actual number of Async Type 12 PDUs
required to cope with the generated workload. This way,
from each simulation we obtain the minimum number of
Async Type 12 PDUs that provide no deadline misses
for a given mean message generation period.

In Fig. 6, on the left side, we compare the actual
minimum cycle time of the EDF-based Swapping with
the one of the EtherCAT standard.

The minimum cycle time for the EtherCAT standard
calculated using formulas (1) and (2) is 74.2 us.

Fig.6 shows that, while the EtherCAT standard has a
cycle time with a fixed duration, the EDF-based
Swapping approach allows for shorter frames (and thus

Number of

Async Type 12

PDU

Minimum

Cycle Time

(TC)

Maximum

DMR (%)

Corresponding
λ

1 50.68 us 3.7980 600 us

2 54.36 us 3.5769 300 us

3 58.04 us 3.5050 212.5 us

4 61.72 us 1.5087 175 us

5 65.40 us 1.5076 150 us

6 69.08 us 1.8290 125 us

7 72.76 us 1.9733 112.5 us

Table 4. Max. DMR for asynchronous
messages as a function of the number of
Async Type 12 PDUs with different mean
generation intervals in a non-saturated
network.

Symbol Value/range

N 10

SPP 32 bytes

NAPDU from 1 to 8

SAPDU 32 bytes (12 header + 20 payload)

tsv 700 ns

DLAPP 500 us

APPSTART exponential (25 us)

λ from 150 us to 1000 us

Table 5. Simulation 2 parameters

Fig. 6. Comparison of the EDF-based
Swapping with the EtherCAT standard for
different message generation rates

shorter cycle times) without any deadline misses. The
right side of Fig. 6 shows the number of Async Type 12
PDUs that are needed to have no deadline misses for a
given asynchronous real-time workload. When the
asynchronous traffic increases, the number of Async
Type 12 PDUs required to experience no deadline misses
increases, thus also increasing the cycle time. We notice

that, for workloads over 6 x 104 messages/s, the
number of Async Type 12 PDUs that are needed for no
deadline misses grows and, in this case, the EtherCAT
standard, which handles the asynchronous traffic as
periodic one, becomes more convenient than the EDF-
based Swapping approach. These results suggest that,
when the asynchronous workload is low, EDF-based
Swapping is the preferred option, as it provides for
shorter cycle times than the EtherCAT standard and
therefore offers better support to asynchronous real-time
traffic. In particular, applications requiring very short
cycle times can be supported.

5.2. Comparison with the CAN-Like Approach
In this simulation, a comparison between the EDF-based
Swapping approach and the CAN-Like Approach
proposed in [10] is performed. The CAN-Like approach
differs from the EDF-based one in various aspects, listed
as the following:
• Asynchronous messages have a static priority,

which is set offline during the system
configuration.

• In order to allow a slave to know if its message
won the contention and has arrived at the
destination, an additional telegram must be sent
from the master. A slave cannot move to the next
message to be transmitted until it finds out that its
previously transmitted message was the winner1.

In this simulation, both in the CAN-Like and in the
EDF-based Swapping approach, all the asynchronous
real-time messages have the same relative deadlines
which are chosen with a uniformly distributed
probability. The chosen values, i.e., 500, 600, and 700
microseconds are significantly larger than the cycle time
for both the protocols under study. For comparison
purposes, in the CAN-Like approach different priorities
are chosen according to the Deadline Monotonic
algorithm, i.e., messages with a smaller relative deadline
have a higher priority. This scheduling strategy is very
convenient for the CAN-Like approach. In the EDF-
based Swapping approach, absolute deadlines are
assigned based on both the relative deadline and the
message generation times. The DMR versus the mean
message generation rate is evaluated.

The simulation parameters for both protocols are
specified in Table 6.

1 This problem was partially resolved in [11] with the introduction of

the Multiple Arbitrate (MARBS) Telegrams, where a telegram can
contain multiple asynchronous data, but the confirmation message
from the master is always required.

In Fig. 7 the results of the comparison between the
CAN-Like Approach and the EDF-based Swapping
Approach are shown. The CAN-Like approach
experiences a higher number of deadline misses than the
EDF-based Swapping under the same workload.
Moreover, for MGR values higher than 1 x 104 msg/s
with the CAN-Like approach queues start to be filled up
and the network approaches saturation, while with the
EDF-based Swapping approach saturation starts for
MGR values higher than 1.67 x 104 msg/s.

There are two reasons for this result. First of all, the
CAN-Like approach requires two cycles for each
asynchronous transmission (as the telegram must be
acknowledged with another one containing the same data
as that received), while the EDF-based Swapping
approach requires only one cycle. This explains both the
higher number of deadline miss experienced by the
CAN-Like approach and also why the EDF-based
approach reaches saturation under much higher
workloads than the CAN-Like one. Moreover, the high
number of deadline miss is also due to starvation, which
in the CAN-Like approach affects low priority messages
under high workloads.

6. Conclusions and Future Works

The EDF-based Swapping Approach proposed in this
paper provides an efficient way to transmit asynchronous
real-time messages over EtherCAT networks.

Symbol CAN-Like EDF-based Swapping

N 10 10

SPP 32 bytes 32 bytes

NAPDU 1 1

SAPDU 20 bytes 32 bytes (12 header + 20 payload)

tsv 700 ns 700 ns

DLAPP 500, 600, 700 us 500, 600, 700 us

λ from 1000 to 2400 us from 600 to 1000 us

CLPRIO 700 (higher), 600, 500 -

Table 6. Simulation parameters for the
comparison with the CAN-Like approach.

Fig. 7. Deadline miss comparison between
the CAN-Like and the EDF-based
Swapping Approach

Simulations have proven that the EDF-based
Swapping approach significantly reduces the minimum
cycle time required for transmitting asynchronous real-
time traffic if compared with the EtherCAT standard, in
which the asynchronous real-time traffic is scheduled as
periodic traffic. This is because Async Type 12 PDUs
allow to schedule asynchronous traffic by using
EtherCAT frames that are shorter than the ones used in
the standard approach. The number of Async Type 12
PDUs embedded in the EtherCAT frame affects the
DMR of asynchronous messages, as a lower number of
Async Type 12 PDUs entails longer delays for
asynchronous real-time traffic. As a result, a suitable
tradeoff between the cycle time and the DMR of
asynchronous messages depending on the application
considered has to be found.

The EDF-based Swapping approach has also been
compared with the CAN-Like proposed in [10]. We
found that both approaches are suitable for supporting
event-driven traffic. However, the EDF-based approach
is deadline-aware, so it is more suitable for
asynchronous real-time messages. In fact, as the EDF-
based Swapping approach explicitly takes deadlines into
account, although all the asynchronous messages are
given the same chance for transmitting, the message with
the closest deadline will progress on the network faster
than the ones with less urgent deadlines. On the contrary,
in the CAN-Like approach, it is the static priority of the
message that rules the contention. Although the priority
assignment in the CAN-Like approach can be made so as
to reflect the time criticality of the messages, as we did
in this paper using a Deadline Monotonic scheduling,
however, the typical problems that are found with static
priority in real-time scheduling, i.e., the potential
starvation for low priority messages under high
workloads, may still occur. This is not the case for the
EDF-based approach, as even under high workloads,
messages with similar deadlines will be dealt with in the
same way. As far as alarms are concerned, to be on the
safe side the most critical alarms can be scheduled as
periodic real-time traffic, while the other ones can be
scheduled with the EDF-based Swapping with deadlines
assigned by the application layer.

Future works will address a comprehensive
assessment of the EDF-based Swapping approach in
several different scenarios. Moreover, in order to further
improve the performance, mechanisms able to embed
more than one APDU in one Async Type 12 PDU,
similar to that proposed in [11], will be investigated and
a comparison with [11] will be performed. In addition,
admission control tests for the EDF-based swapping
approach to avoid deadline misses for asynchronous
traffic for a given constraint on the cycle time will be
investigated. We will also further address alarms
handling.

Finally, an algorithm for dynamically changing the
number of Async Type 12 PDUs depending on the actual
asynchronous real-time workload will be addressed.

7. References

[1] IEC 61158-3-12 Ed. 2, “Industrial communication
networks - Fieldbus specifications - Part 3-12: Data-link
layer service definition - Type 12 elements”, 2010.

[2] IEC 61158-4-12 Ed. 2, “Industrial communication
networks - Fieldbus specifications - Part 4-12: Data-link
layer protocol specification - Type 12 elements”, 2010.

[3] IEC 61784-2 Ed. 2, “Industrial communication networks
- Profiles - Part 2: Additional fieldbus profiles for real-
time networks based on ISO/IEC 8802-3”, 2010

[4] S. Vitturi, L. Peretti, L. Seno, M. Zigliotto, C. Zunino,
“Real-time Ethernet networks for motion control”,
Computer Standards & Interfaces, 33, 465–476, 2011.

[5] J. Jasperneite, M. Schumacher, K. Weber, “Limits of
Increasing the Performance of Industrial Ethernet
Protocols” in Proc. of the IEEE Conference on Emerging
Technologies and Factory Automation (ETFA), pp. 17-
24, Patras, Greece, 25-28 Sept. 2007.

[6] G. Prytz, “A performance analysis of EtherCAT and
PROFINET IRT”, in Proc. of the IEEE Conference on
Emerging Technologies and Factory Automation
(ETFA), pp. 408-415, Hamburg, Germany, Sept. 2008.

[7] M. Knezic, B. Dokic, Z. Ivanovic, “Topology aspects in
EtherCAT networks”, in Proc. of the 14th IEEE
International Power Electronics and Motion Control
Conference (EPE-PEMC), T1, 1-6, Ohrid, Republic of
Macedonia, Sept. 2010.

[8] G.Cena, S. Scanzio, A. Valenzano, C. Zunino “A
Distribute-Merge Switch for EtherCAT Networks”, in
Proc. of the 8th IEEE International Workshop on Factory
Communication Systems (WFCS), 121-130, Nancy
France, May 2010.

[9] G. Cena, I. C. Bertolotti, S. Scanzio, A. Valenzano, C.
Zunino, “Evaluation of EtherCAT Distributed Clock
Performance”, IEEE Transactions on Industrial
Informatics, 8, 1, 20-29, Feb. 2012.

[10] G. Cena, A. Valenzano, C. Zunino, “An arbitration-
based access scheme for EtherCAT networks”, in Proc.
of the IEEE Conference on Emerging Technologies and
Factory Automation (ETFA), 416-423, Hamburg,
Germany, 15-18 Sept. 2008.

[11] G. Cena, I. C. Bertolotti, A. Valenzano, C. Zunino, “A
high-performance CAN-Like arbitration scheme for
EtherCAT”, in Proc. of the IEEE Conference on
Emerging Technologies and Factory Automation
(ETFA), pp. 1-8, Mallorca, Spain, 22-25 Sept. 2009.

[12] A. Di Stefano, A. Gangemi, L. Lo Bello, O. Mirabella,
“Slot swapping mechanisms for Process Control
Networks”, in Proc. of the IEEE International
Symposium on Industrial Electronics (ISIE), vol. 1, pp
143-148, Guimaraes, Portugal, 07-11 July 1997.

[13] A. Di Stefano, A. Gangemi, L. Lo Bello, O. Mirabella,
“A slot swapping based fieldbus”, in Proc. Of the 24th

Annual Conference of the IEEE Industrial Electronics
Society (IECON), vol. 1, pp. 214-219, Aachen,
Germany, 31 Aug. - 4 Sept. 1998.

[14] L. Lo Bello , A. Gangemi, “A slot swapping protocol for
time-critical internetworking”, Journal of Systems
Architecture, vol. 51, pp. 526-541, Elsevier, 2005.

[15] L. Liu, J. Layland, “Scheduling algorithms for
multiprogramming in a hard real-time environment”,
Journal of the ACM (JACM) 20, 1, pp. 46-61, 1973.

[16] OMNeT++ Network Simulator Framework.

