An EDF-based Swapping Approach to Enhance Support for Asynchronous
Real-Time Traffic over Ether CAT networks

Gaetano Patti, Lucia Lo Bello, Giuliana Alderisiaio Mirabella
Department of Electrical, Electronic and ComputegiGeering
University of Catania
Catania, Italy
{gaetano.patti, lucia.lobello, giuliana.alderisiapio.mirabella}@dieei.unict.it

Abstr act handled by means of special frames, calegilboxes
The master sends those frames to the slaves that ha
EtherCAT is a real-time Ethernet protocol for fagto ~ previously signaled the need for asynchronous
automation applications that enables periodic data transmission. ~ However, the transmission of
exchange with cycle times of a few microsecondsktha asynchronous real-time traffic is not efficient,iaseeds
to the capability to process frames “on-the-fly”. to be scheduled using at least one telegram fdr glave
EtherCAT does not provide efficient mechanisms forthat required transmission, with the result of @asing
enabling the transmission of asynchronous real-time the cycle time.
data from slave nodes. This paper proposes an EDF- To allow slaves to autonomously transmit
based Swapping Approach that allows slaves to send@synchronous traffic, in the literature an approah
real-time asynchronous traffic over EtherCAT netkgor ~ Proposed that uses a CAN-Like arbitration scheme to
in an efficient way, while maintaining the transmit asynchronous messages in a contended
interoperability with standard devices. EtherCAT telegram [10]. The approach requires the
The paper describes the EDF-based Swappingmaster to send an acknowledgement on message
Approach and presents a comparative performancereception, which allows the slave to remove the
evaluation with both the EtherCAT standard and an successfully transmitted message from its localiguén
approach in the literature that exploits CAN-Like addition, the approach in [10] assumes that thesages

arbitration. priority is static.
. An improvement of [10] is proposed in the work in
1. Introduction [11], which foresees that multiple messages pegtaim

EtherCAT is a Real-Time Ethernet (RTE) protocol €@n be transmitted, however a master acknowledgment
suitable for factory automation applications. It is Message is still needed.
included as part of the IEC 61158 standard [1}i#ich This paper proposes a novel approach that allogss th
defines fieldbus protocols for industrial commutigas, ~ ransmission of asynchronous traffic with real-time
and in the IEC 61784 [3] standard, which defines th constraints over EtherCAT, while maintaining the
RTE Communication Profiles. EtherCAT provides a interoperability with standard EtherCAT devices.eTh
daisy-chain topology and a master/slave architectur ~ @PProach, here called an EDF-based Swapping approac
which the master periodically transmits standard €nables the slaves to swap an incoming asynchronous
Ethernet frames containing multiple telegrams échll MeSsage based on an Earliest Deadline First digorit
Type 12 PDUs in the IEC 61158 standard). Slaved rea [15], so that messages with closer absolute dessllin
and/or write data in the telegrams by processirg th Preempt those with farther ones. No asynchronous
frame “on-the-fly”. This solution provides cyclerties ~ Message will be lost due to preemption from other
lower than one millisecond, e.g., a 1500-byte Bt~ Messages, as the slave that has swapped the icomin
frame is processed in about 150 us. The EthercATMessage will be in charge of transmitting it whestev
protocol allows the transmission of both real-timed POSSible according to the EDF rule. _
non real-time traffic. The periodic traffic is assed to The goal of the proposed approach is to allow the
be real-time, while asynchronous (i.e., aperiodiajfic slaves transmitting asynchronous real-time dathowit
may have or not have real-time constraints. significantly increasing the cycle time of periodial-
Asynchronous real-time traffic is scheduled in taene ~ time traffic. Moreover, the EDF-based Swapping
way as periodic traffic. The master cyclically ssruhe ~ @PProach provides messages with dynamic priories
or more EtherCAT frames which contain the telegrams thanks to the swapping mechanism, eliminates tieel ne
On the contrary, asynchronous non real-time trafic for the slaves to wait for the master acknowledgeme

message, thus improving the asynchronous real-timecopy of the latest received message. The needhtor t

throughput.
The paper is organized as follows. Section 2 oeslin

slave to wait for the “ack” prevents the possipilib
embed multiple asynchronous telegrams in an Eth&rCA

related works. Section 3 summarizes the EtherCAT frame. This problem was overcome by the approach

protocol. Section 4 introduces the EDF-based Swappi

proposed by the same authors in [11], which augsnent

approach, while Section 5 presents a comparativethe approach in [10] with the capability of embetgdi

performance assessment through
simulations. Finally, Section 6 concludes the paget
outlines future work.

2. Related Works

OMNeT++ multiple asynchronous messages within a single

telegram. However, the need for acknowledgment stil
remains, thus reducing the bandwidth efficiency.

The idea proposed in this paper is inspired bySlo¢
Swapping Protocol (SSP) that was presented in [12],

Many studies addressed EtherCAT with the aim of [13], and [14] to interconnect heterogeneous fietlb

assessing its performance and proposing improvement

networks through a real-time backbone. In the SSP

The work in [4] presents a performance comparison protocol, fieldbus gateways are connected accortiray

between EtherCAT and Powerlink in the context of a
coordinated motion control application. In [5] al&] a
comparison between EtherCAT and PROFINET IRT is
presented, while in [7] the EtherCAT performanceéhwi
different topologies is investigated. In [8] a sshitthat
significantly reduces propagation delays is prodose

EtherCAT provides a clock synchronization protocol
called Distributed Clocks (DC). The synchronization
accuracy of this protocol, evaluated in [9], is ays
better than 1 microsecond.

A limitation of EtherCAT is the limited support
provided to asynchronous traffic, as the protocalsw
specifically designed for periodic traffic.

In order to overcome such a limitation, in [10] a
CAN-based arbitrating transmission scheme is pregos
that allows EtherCAT slaves to transmit asynchr@nou
real-time data without the need for scheduling ¢hos
messages as periodic traffic. In the approach, \a ne
EtherCAT telegram, containing an
message with an assigned priority, is defined. @vesl
with a message ready for transmission can “onfie-f
replace the content of the telegram with its ovirthe
ready message to be transmitted has a higher tyriori
than the incoming message in the telegram. Theegsoc
continues until the asynchronous telegram reaches t
master, which will then notify all the slaves abahé
content of the received telegram.

asynchronous

ring topology. The ring is covered uninterruptedly a
sequence of slots, where each slot carries a nessag
node connected to the backbone maintains a lo@lau
of messages ordered according to their absolutdlidea
(which depends both on arrival time and on the talp
validity of the message). A node can swap an inagmi
message with its own if, and only if, the deadlaighe
packet in the local queue is closer than that & th
message that is traversing the node. If this is#se, the
node replaces the ongoing message with its own, and
stores the swapped message in its local queue.

The introduction of an SSP-based approach in
EtherCAT enables dynamic priority for asynchronous
messages, thus overcoming the limitations found @j
and [11]. The swapping mechanism also allows to
immediately remove a message from the slave quedie a
also provides the capability of embedding multiple
asynchronous telegrams in one EtherCAT frame.

3. EtherCAT Protocol features

EtherCAT [1][2] has a master/slave architecture in
which the master cyclically sends an Ethernet frame
slaves according to a daisy-chain topology. Slaeesl
and/or insert data into PDUs called Type 12 PDUs,
which are processed “on the fly”, i.e., the slapescess
one byte at a time and forward it to the next nailaen
the last slave of the chain is reached, the frame i

The approach in [10] therefore enables asynchronousegirected backward to the master as a responsee fra

messages transmission without the need for theemiast
poll the slaves and avoids scheduling time-corstichi

and the cycle ends. This behavior requires thatades
be full-duplex devices capable of receiving and

asynchronous messages as periodic data, as thisl WOU {ransmitting at the same time.

entail a bandwidth waste. However, the approach

proposed in [10] has some drawbacks. For instaage,
message priorities are static, under high asyndusn
workloads low priority messages, due to interfeeenc
from high priority ones, would experience long gsla
with a potential for starvation for the lowest piip

messages. Another drawback is the need for an
acknowledgement mechanism to notify the slaves tabou

the message that has been successfully receivexd, t&o
allow the slave that transmitted the message t@vent
from its local queue. The acknowledgment is redlizg
the master sending an “ack” telegram that contains

The Ethernet frame contains the Type 12 frame,
which encapsulates one or several Type 12 PDUs.IFig
shows the EtherCAT frame structure. The Type 1 é&a
supports three types of data:

* Type 12 PDUs, for transmitting process data.

« Network variables, for network management
purposes.

« Mailboxes, for transmitting standard IP packets
and non real-time data.

The Type 12 PDU includes a header, which specifies
the address and command for a slave, (i.e., redid or

read/write), a data field and a Working Counterldcie PDUs and the length of their payloads. Moreovee, th

(WCF) used for error detection. maximum payload size of the Type 12 frame is 1500
Standard Ethernet Protocol Data Unit bytes and a large number of Type 12 PDUs entads th
Ethernet Header (22 bytes) | Ethernet Payload (42 - 1500 bytes) | FCS (@ bytes) need to use more Ethernet frames, with a consequent
............................... increase of the minimum cycle time.
.............................. et rame “-... 4. The EDF-based Swapping Approach

s | _ _“ The EtherCAT protocol does not allow one or more

slaves to transmit messages in an autonomous wesy. T
transmission of non real-time traffic is realizéuough
special Type 12 frames, called mailboxes, but iigso

the master polling the slaves so as to enable tteem
Fig. 1. EtherCAT frame structure with transmit mailboxes.

telegrams. To allow the slaves to transmit asynchronous taffi
many solutions can be adopted. For instance, one
solution is to periodically poll the slaves, in erdto
determine which slaves have asynchronous data to
transmit. This is accomplished through a singldédbies

Type 12 PDU

| Type 12 PDU Header (10 bytes) Data Working Counter (2 bytes)

An important index to evaluate the EtherCAT
performance is the minimum cycle timecfT4][5], i.e.,
the minimum time needed to exchange the input/dutpu

data bet th t d all the sl akbh . , .
ata between the master and all the slaves [Sh S Memory Management Unit (FMMU), i.e., an entity that

in formula (1) [4]: . :
allows a mapping between the slave physical memory

Te = Top + Toe + Tye + Tif (1) and a portion of a Type 12 PDU, thus providing stav
with the possibility of reading/writing data in &gle
telegram. After collecting the information abouteth
slaves that have asynchronous data to transmit, the
master schedules a mailbox frame for each of ttieus,
significantly increasing the cycle time. Mailbox@® not
suitable for transmitting real-time asynchronous
messages, as there is no way to provide guarabtad a
the message delivery time.

Another solution is to handle asynchronous tradfc
periodic traffic using the Type 12 PDU. This optimay
be suitable for asynchronous real-time traffic lseaa
Type 12 PDU is reserved for each slave, thus
2 guaranteeing transmission. However, this solutias &

drawback, as it reserves a telegram to the potentia
] transmission of asynchronous data without any gueea
Toe = Top + L X (Tep, + Tye) + X5y Tc(t‘) (2) that there will actually be data to transmit. If data are
available for transmission, this approach entaifs a
unnecessary increase of the cycle time and bankdwidt
waste.

The new idea proposed in this paper is to introduce
novel Type 12 PDU, called Async Type 12 PDU, to be
used by slaves for sending asynchronous trafficrwhe
they really need to transmit. The Async Type 12 FBU
contented between all the slaves that have asynchso
real-time data to send. Contention is handled alicgr

where

* Telis the time necessary to transmit the Ethernet
header and Frame Check Sequence (FCS)
fields.

* Ty is the interframe gap, i.e., the time between
the end of frame and the beginning of the next
one.

* T4 is the frame delay, i.e., the time introduced
by each slave for processing the frame.
Assuming that such a delay is the same for all
the slavesT ~NxT, whereN is the number of
slaves andy, is the slave processing time.

* Te.is the time necessary to transmit the Type 1
frame, specified by formula (2) [4]:

whereTg, is the time necessary to transmit the Type 12
frame headerl is the number of Type 12 PDUs in a
Typel2 frame, Ty and T, represent the transmission
time of the Type 12 PDU header and working counter,
respectively. FinallyT is the time to transmit the i-th
Type 12 PDU payload.

Formulas (1) and (2) show that the minimum cycle
time directly depends on both the number of Type 12

Ethernet Header Header Type 12 | Type 12 PDU Async Type 12 PDU FCS
e APDU . e, ;
......... .“ APDU Header e
Type 12 HDR PADDING
(CMD = APDU) APDU_DL APDU_ADR APDU_LEN APDU_PAYLOAD (if needed) WCK
Bytes 10 6 4 2 APDU_LEN 2

Fig. 2. EtherCAT Frame structure with Async Type 12 PDU

to a preemptive policy based on the Earliest Deadli
First (EDF) algorithm [15]. This is possible, as thaisy-
chain topology used in EtherCAT allows for preemgti
messages by changing “on-the-fly” the telegram qeyl
of an incoming frame when it goes through a slave

accuracy, the absolute deadline is expressed in
microseconds.

Due to serial communication, to perform deadline
comparison on-the-fly, the six bytes of the deafliare

encoded from the most significant byte to the least

number of Async Type 12 PDUs to be embedded in asignificant byte, and their transmission follows ttame

Type 12 frame is set during the configuration phase
depending on both the constraint on the cycle time
the asynchronous real-time workload generated tnd i
constraints, also taking into account the maximum
Ethernet frame payload (1500 bytes).

The frame structure is shown in Fig. 2. The Async
Type 12 PDU contains an Asynchronous PDU (APDU)
which is composed of a header, a payload and, if
required, a padding. The Async Type 12 PDU hagdfixe
length and its payload is the APDU. The APDU header
fields are the ones listed below, i.e.,

APDU_DL (6 bytes): the APDU deadline,
which is used to take the swapping decision.
APDU_ADR (4 bytes): the address of the slave

order.
The modules implementing the EDF-based Swapping
Protocol are shown in Fig. 3.

Application Layer

13 $

Data Link Layer

Async Queue (AQ)

2 N

In_Buff Out_Buff

standard Type 12
Data Link Modules

I3

Physical Layer

that has sent the latest message received by the

master.
APDU_LEN (2 bytes): the length of the APDU
payload.

In order to maintain the coexistence between the
slaves that implement the EDF-based Swapping
Approach and those that implement the EtherCAT
standard, the Async Type 12 PDU header is mapped o
the standard Type 12 Header as specified in Table 1

The CMD field provides a new value (e.g., OxOFX tha

indicates that the Type 12 PDU must be processed a?‘nessageM.
[o}}

asynchronous PDU. The ADR field contains the addres
of the slave that has sent the latest messageveecby
the master.

Data Field Data Type Value/description

CMD Unsigned8 Command: APDU (0x0F)
IDX Unsigned8 Index

ADR DWORD Slave address of last message
LEN Unsigned1l Length of DATA field
RESERVED Unsigned3 0x00

Cc Unsigned1 Circulating Frame

NEXT Unsignedl 0 if the last PDU in the frame
IRQ WORD Reserved for future use
DATA OctetString Data

WKC WORD Working Counter

Table 1. Async Type 12 PDU Fields

Each APDU has an associated absolute deadline tha{)therwisel\/l

depends on the message expiring time.

A slave generating an APDU calculates the absolute

deadline by adding the relative deadline of the sags
received by the Application layer to the systemetifihe
System Time variable is 64 bits long and contahes t
nanoseconds elapsed since January 1, 2000 [9]he\s t

Fig. 3. Data Link Layer modules for the EDF-
based Swapping approach

Each slave maintains a local queue (Asynchronous
Queue, AQ) of APDUs ordered according to their
absolute deadlines. This is possible, as the E®ErC

rotocol specifies a clock synchronization protocol

rﬁalled Distributed Clocks (DC)[9][1], that provides

synchronization accuracy in the order of nanosesond

When a slave needs to send an APDU (i.e., a local
stored in the output buffer Out_Buff) and
is being traversed by an Async Type 12 PDU contgini
another APDU (i.e., an incoming messalgk,, stored in
the input bufferin_Buff), it can swap the incoming
APDU with the local one according to the EDF rule,,
if, and only if, M, has a closer deadline thih,. In this
case, the slave inserts the swapped APDU in ital loc
queue according to its deadline.

The comparison works as follows. The i-th bytelsf t
deadline of the incoming messagd, (i.e., the
APDU_DL field of the APDU),B;,, for i=0...5, is
compared with the corresponding byte of the APDU_DL
field of the APDU of the local messadé,, Bi,. The
incoming messagd/;, is swapped if, and only if, the
following inequality (3) is true

Biin > Biio (3)
in is forwarded to the next slave.

If a swap occurs, while the local messadg is
transmitted to the next slave and removed fromdbal
gueue, the swapped message has to be entirelyedcei
and is then inserted in the local queue accordingst
deadline.

The first advantage of this approach is that no

approach here proposed does not require If]"gmosecongsynchronous message will be lost due to preemption

Data field Symbol
Number of slaves N
Periodic payload size Sp
Number of Async Type 12 PDUs Nappu
APDU size Sappu
Slave latency tey
Application message relative deadline DLapp
Application start time APPstarT
Async Mean Generation Interval A
CAN-Like message priority Clerio

Table 2. Notation used for simulation
parameters

from other messages, as the slave that has swdpeed
incoming message will be in charge of transmitting

whenever possible according to the EDF rule.
Moreover, the EDF-based transmission
provides messages with dynamic priority,

preventing the starvation problems that affect lowe

priority messages under fixed priority scheduling.

5. Simulations

the following partof this Section is shown in Table 2.
Simulation time was 500 ms.

5.1. Performance evaluation of the EDF-based
Swapping Approach

In the first set of simulations, the performancetw
EDF-based Swapping Approach is evaluated by varying
the mean generation interval of asynchronous messag
from all slaves. The asynchronous workload has been
generated using an exponentially distributed random
function with mear\. Several simulations were run by
varying the number of Async Type 12 PDUs embedded
in each EtherCAT frame.
The performance parameter chosen for this scemario
the Deadline Miss Ratio (DMR), calculated at the
Application layer of the master and expressed a&s th
ratio between the number of asynchronous real-time
messages that miss their deadline and the totabeauof
asynchronous real-time messages generated. Nat# tha
this paper we are not addressing or applying any
admission control tests, so deadline misses for
asynchronous messages may occur. Late asynchronous
messages, i.e., those that exceed their deadlimgsbe
either dropped or not, depending on the applica(fiom

In order to evaluate the EDF-based Swapping OF Soft real-time). In our simulations we decidest to
approach, a simulator has been developed using thélrop late asyr_lchronous messages, so as to as®ess th
OMNeT++ framework [16]. The goal of the simulations Network behavior under higher workloads.

is to assess the performance of the EDF-based Swapp

approach and to make a performance comparison witho-1.1.Simulation 1: DMR assessment by varying the
the EtherCAT standard as far as the transmission ofasynchronous network workload and the number of

asynchronous real-time data from the slaves

is Async Type 12 PDUs.

concerned. Moreover, a comparison between the EDF- This simulation evaluates the DMR obtained by
based Swapping approach and the CAN-Like approachvarying the network asynchronous workload, while

proposed in [10] is also presented.

As shown in Fig 4, the evaluated scenarios cowsist
a single EtherCAT segment with 10 slaves. The maste

keeping a constant periodic workload. Simulation
parameters are specified in Table 3.

directly connected to the first slave and perioica _Symbol Valuelrange

sends Ethernet frames. In all the simulations, the N 10

periodic real-time workload consists of one 32-byte Se» 32 bytes

telegram sent from each slave every cycle. In these Naeou from1to7

simulations no mailboxes are used for transmittiea)- Swpou 32 bytes (12 header + 20 payload)
time asynchronous traffic, as mailboxes are no¢ abl tev 700 ns

support real-time constraints, so they are noabiétfor DLape 500 us

real-time asynchronous traffic. Moreover, potential APPsarr exponential (25 us)
transmission errors are not taken into accounthay) from 112.5 us to 1000 us

are beyond the scope of this paper. The notatied irs

S ~ ~ ~
ethercatMaster €thercatSlave ethercatslavel ethercatSlave2 ethercdtslave3

& # &

etherc#tSlave7? ethercatSlave6 ethercatSlave5 ethercatSlaved

3

ethercatSlave8 ethercatSlave9

Fig. 4. Simulated network topology

Table 3. Simulation 1 parameters

The increased number of Async Type 12 PDUs, on
the one hand, provides more room for asynchronous
traffic, on the other hand it increases the EthéFCA
frame length and thus also the minimum cycle time.

The maximum DMR is the highest DMR value
obtained before the network approaches saturation.

Table 4 shows the values of the maximum Deadline
Miss Ratio for asynchronous messages as a funofion
the mean message generation period obtained bingary

the number of Async Type 12 PDUs embedded in one5.1.2.Simulation 2: Comparison with the EtherCAT
EtherCAT frame for each simulation run. standard.

By increasing the number of Async Type 12 PDUs, The aim of this simulation is to compare the
higher workloads can be supported, thus reducimg th minimum cycle time obtained by the EtherCAT staddar
maximum DMR values. However, as the second columnand by the EDF-based Swapping approach. In Table 5
in Table 4 shows, this is at the expense of lomyete the simulation parameters are shown.
times. As a result, at design time the tradeoffveen For the EtherCAT standard, formulas (1) and (2)
the maximum asynchronous workload that can beallow the minimum cycle time to be obtained, ani th
supported and the corresponding cycle time valgethha value does not vary with the workload.
be taken into account.

Symbol Value/range
Number of Minimum Maximum Corresponding N 10
Async Type12 CycleTime DMR (%) 4 Sp 32 bytes
PDU (Te) Nappou from1to 8
1 50.68 us 3.7980 600 us Sapou 32 bytes (12 header + 20 payload)
2 54.36 us 3.5769 300 us tsy 700 ns
3 58.04 us 3.5050 212.5 us DLapp 500 us
4 61.72 us 1.5087 175 us APPstart exponential (25 us)
5 65.40 us 1.5076 150 us A from 150 us to 1000 us
6 69.08 us 1.8290 125us Table 5. Simulation 2 parameters
7 72.76 us 1.9733 1125 us

In the EDF-based Swapping approach the same
formulas as EtherCAT are used, but the minimumecycl
time varies with the number of Async Type 12 PDUs.
Therefore, to perform the comparison, we first h&wve
run simulations with the EDF-based Swapping apgroac
to know the actual number of Async Type 12 PDUs

Fig. 5 shows the details of the simulation perfedm required to cope with the generated workload. Ty,
with Nappy = 1 to show the trend of DMR as a function from each simulation we obtain the minimum numbfer o
of the mean asynchronous messages generation ratdsync Type 12 PDUs that provide no deadline misses
(MGR). For MGR values in the range from 0 to*10 for a given mean message generation period.
msg/s, no deadline misses were experienced by In Fig. 6, on the left side, we compare the actual
asynchronous messages. From MGR = 1 to 1.67*x 10 minimum cycle time of the EDF-based Swapping with
msg/s the DMR remains below 4%, while for MGR the one of the EtherCAT standard.
values higher than 1.67 x 4@nsg/s queues start to be

Table 4. Max. DMR for asynchronous
messages as a function of the number of
Async Type 12 PDUs with different mean
generation intervals in a non-saturated
network.

80.12 : . : —a
filled up and the network approaches saturation. Joaa ; o
4 . T T . . ‘ : :
. FRFB e AL 1=
B b e e z EtherCAT Stardard g
5 sooe 16 L
3t B = : : @
z ';3 [T PP PR SO PR PPPE S PP PP L N =
i 2 : &
£ 25 i > ©
= G op1.72 14 €
- E EDF -based Swapping : 2
£] E 58.04 : : s
© Z : : c
= : :
£ 150 g 5438 i e 2
o : N
T B N
o L o SO‘GEJ O ST bt
a7 i i i i ;
05] 1 2 3 4 5] 7
: Network Mean Message Generation Rats (messages/s) w10t
s 2 i i i
0.4 0.6 0.8 1 1.2 1.4 1.8 1.8
Network Mean Message Generation Rate {messages/s) w10" F| g 6 Com panso n Of th e EDF_based

Swapping with the EtherCAT standard for

Fig. 5. DMR as a function of the mean ; .
different message generation rates

message generation rate

The minimum cycle time for the EtherCAT standard
calculated using formulas (1) and (2) is 74.2 us.

Fig.6 shows that, while the EtherCAT standard has a
cycle time with a fixed duration, the EDF-based
Swapping approach allows for shorter frames (and th

These results highlight the ability of the EDF-lthse
Swapping approach to support time constrainedidraff
with varying messages arrival patterns.

shorter cycle times) without any deadline missese T Symbol CAN-Like EDF-based Swapping

right side of Fig. 6 shows the number of Async Tyj@e N 10 10
PDUs that are needed to have no deadline misses for S» 32 bytes 32 bytes
given asynchronous real-time workload. When the Ny 1 1
asynchronous traffic increases, the number of AsSync Swou 20 bytes 32 bytes (12 header + 20 payload)
Type 12 PDUs required to experience no deadlinsesis t., 700 ns 700 ns
increases, thus also increasing the cycle timenutiee DLape 500, 600, 700 us 500, 600, 700 us
that, for workloads over 6 x 1Omessages/s, the . from 1000 to 2400 us from 600 to 1000 us

number of Async Type 12 PDUs that are needed for NnOCLeroc 700 (higher), 600, 500
deadline misses grows and, in this case, the EXErC))
standard, which handles the asynchronous traffic as 'ableé 6. Simulation parameters for the
periodic one, becomes more convenient than the EDF- comParison with the CAN-Like approach.

based Swapping approach. These results suggest that |5 Fig. 7 the results of the comparison between the
when the asynchronous workload is low, EDF-based caN-Like Approach and the EDF-based Swapping
Swapping is the preferred option, as it provides fo Approach are shown. The CAN-Like approach
shorter cycle times than the EtherCAT standard a”dexperiences a higher number of deadline missesttiean

therefore offers better support to asynchronoustiree EDF-based Swapping under the same workload.

traffic.. In particular, applications requiring veshort Moreover, for MGR values higher than 1 x*1@sg/s

cycle times can be supported. with the CAN-Like approach queues start to bedilig

5.2. Comparison with the CAN-Like Appr oach and the network approaches saturation, yvhile with t

In this simulation, a comparison between the ED§eda EDF-based Swappmg approach saturation starts for

) ’ P : MGR values higher than 1.67 x“ifisg/s.

Swapping approach and the CAN-Like Approach

proposed in [10] is performed. The CAN-Like apptoac ~ #[7 1T T T !

differs from the EDF-based one in various aspédisted S

as the following:

» Asynchronous messages have a static priority,
which is set offline during the system
configuration.

* In order to allow a slave to know if its message
won the contention and has arrived at the
destination, an additional telegram must be sen
from the master. A slave cannot move to the nexi F e T R R e B =y
message to be transmitted until it finds out tist i Nework Maan Massage Ganeration Rate (messages/s] xa
previously transmitted message was the wihner Fig. 7. Deadline miss comparison between

In this simulation, both in the CAN-Like and in the the CAN-Like and the EDF-based

EDF-based Swapping approach, all the asynchronous swapping Approach

real-time messages have the same relative deadlines

which are chosen with a uniformly distributed There are two reasons for this result. First of tak

probability. The chosen values, i.e., 500, 600, @86 CAN-Like approach requires two cycles for each

microseconds are significantly larger than theeyshe ~ asynchronous transmission (as the telegram must be

for both the protocols under study. For comparison acknowledged with another one containing the saate d

purposes, in the CAN-Like approach different pties ~ as that received), while the EDF-based Swapping

are chosen according to the Deadline Monotonic approach requires only one cycle. This explains tiog
algorithm, i.e., messages with a smaller relatieadine ~ higher number of deadline miss experienced by the
have a higher priority. This scheduling strategwésy =~ CAN-Like approach and also why the EDF-based
convenient for the CAN-Like approach. In the EDF- approach reaches saturation under much higher
based Swapping approach, absolute deadlines aravorkloads than the CAN-Like one. Moreover, the high
assigned based on both the relative deadline aed thnumber of deadline miss is also due to starvatidrich
message generation times. The DMR versus the mearn the CAN-Like approach affects low priority megea
message generation rate is evaluated. under high workloads.

The simulation parameters for both protocols are

specified in Table 6.

I8
&

o
T

T
: | —e—EDF-based Swapping
i | —=—CAN-Like

)
5 E &
— T

Ceadline Miss Ratio (%,
=

oo Mor o @
LR —

6. Conclusions and Future Works

The EDF-based Swapping Approach proposed in this
L This problem was partially resolved in [11] withe introduction of ~ Paper provides an efficient way to transmit asyoobus

the Multiple Arbitrate (MARBS) Telegrams, whereedegram can real-time messages over EtherCAT networks.
contain multiple asynchronous data, but the corgdtiom message

from the master is always required.

Simulations have proven that the EDF-based

Finally, an algorithm for dynamically changing the

Swapping approach significantly reduces the minimum number of Async Type 12 PDUs depending on the actua

cycle time required for transmitting asynchronoaal+
time traffic if compared with the EtherCAT standaird
which the asynchronous real-time traffic is scheduks
periodic traffic. This is because Async Type 12 BDU [q]
allow to schedule asynchronous traffic by using
EtherCAT frames that are shorter than the ones irsed

the standard approach. The number of Async Type 12[7]
PDUs embedded in the EtherCAT frame affects the
DMR of asynchronous messages, as a lower number of
Async Type 12 PDUs entails longer delays for [3]
asynchronous real-time traffic. As a result, a ahlé
tradeoff between the cycle time and the DMR of
asynchronous messages depending on the applicatiofy]
considered has to be found.

The EDF-based Swapping approach has also been
compared with the CAN-Like proposed in [10]. We [5]
found that both approaches are suitable for sujgprt
event-driven traffic. However, the EDF-based apphoa
is deadline-aware, so it is more suitable for
asynchronous real-time messages. In fact, as the- ED
based Swapping approach explicitly takes deadiimes 6]
account, although all the asynchronous messages are
given the same chance for transmitting, the mesaitbe
the closest deadline will progress on the netwastdr
than the ones with less urgent deadlines. On th&rany,
in the CAN-Like approach, it is the static priority the
message that rules the contention. Although theripyi
assignment in the CAN-Like approach can be madesso
to reflect the time criticality of the messageswasdid
in this paper using a Deadline Monotonic scheduling [g]
however, the typical problems that are found wittis
priority in real-time scheduling, i.e., the potehti
starvation for low priority messages under high
workloads, may still occur. This is not the case tfee
EDF-based approach, as even under high workloadsjg]
messages with similar deadlines will be dealt withhe
same way. As far as alarms are concerned, to kheon
safe side the most critical alarms can be schedated
periodic real-time traffic, while the other onesnche
scheduled with the EDF-based Swapping with deaslline
assigned by the application layer.

Future works will address a comprehensive
assessment of the EDF-based Swapping approach in
several different scenarios. Moreover, in ordefutther [11]
improve the performance, mechanisms able to embed
more than one APDU in one Async Type 12 PDU,
similar to that proposed in [11], will be investigd and
a comparison with [11] will be performed. In addlitj
admission control tests for the EDF-based swapping[12]
approach to avoid deadline misses for asynchronous
traffic for a given constraint on the cycle timellviie
investigated. We will also further address alarms
handling.

(7]

(10]

(13]

asynchronous real-time workload will be addressed.

7. References

IEC 61158-3-12 Ed. 2, Ifidustrial communication
networks - Fieldbus specifications - Part 3-12: Dtk
layer service definition - Type 12 eleméngd10.

IEC 61158-4-12 Ed. 2, Ifdustrial communication
networks - Fieldbus specifications - Part 4-12: Dtk
layer protocol specification - Type 12 elemé&n2910.

IEC 61784-2 Ed. 2,lhdustrial communication networks
- Profiles - Part 2: Additional fieldbus profilesif real-
time networks based on ISO/IEC 8802210

S. Vitturi, L. Peretti, L. Seno, M. ZigliottoC. Zunino,
“Real-time Ethernet networks for motion coritrol
Computer Standards & Interfaces, 33, 465-476, 2011.
J. Jasperneite, M. Schumacher, K. Webéiimits of
Increasing the Performance of Industrial Ethernet
Protocols in Proc. of the IEEE Conference on Emerging
Technologies and Factory Automation (ETFA), pp. 17-
24, Patras, Greece, 25-28 Sept. 2007.

G. Prytz, ‘A performance analysis of EtherCAT and
PROFINET IRT, in Proc. of the IEEE Conference on
Emerging Technologies and Factory Automation
(ETFA), pp. 408-415, Hamburg, Germany, Sept. 2008.
M. Knezic, B. Dokic, Z. lvanovic, Topology aspects in
EtherCAT networKs in Proc. of the 14th I|IEEE
International Power Electronics and Motion Control
Conference (EPE-PEMC), T1, 1-6, Ohrid, Republic of
Macedonia, Sept. 2010.

G.Cena, S. Scanzio, A. Valenzano, C. Zunind *
Distribute-Merge Switch for EtherCAT Netwdtksn
Proc. of the 8th IEEE International Workshop ontBac
Communication Systems (WFCS), 121-130, Nancy
France, May 2010.

G. Cena, |. C. Bertolotti, S. Scanzio, A. Valenzag.
Zunino, ‘Evaluation of EtherCAT Distributed Clock
Performancg |IEEE Transactions on Industrial
Informatics, 8, 1, 20-29, Feb. 2012.

G. Cena, A. Valenzano, C. ZuninoArf arbitration-
based access scheme for EtherCAT netWorksProc.

of the IEEE Conference on Emerging Technologies and
Factory Automation (ETFA), 416-423, Hamburg,
Germany, 15-18 Sept. 2008.

G. Cena, |. C. Bertolotti, A. Valenzano, C. Zunirié
high-performance CAN-Like arbitration scheme for
EtherCAT, in Proc. of the IEEE Conference on
Emerging Technologies and Factory Automation
(ETFA), pp. 1-8, Mallorca, Spain, 22-25 Sept. 2009.

A. Di Stefano, A. Gangemi, L. Lo Bello, O. Mballa,
“Slot swapping mechanisms for Process Control
Networks, in Proc. of the IEEE International
Symposium on Industrial Electronics (ISIE), vol. dp
143-148, Guimaraes, Portugal, 07-11 July 1997.

A. Di Stefano, A. Gangemi, L. Lo Bello, O. Mballa,
“A slot swapping based fielddusn Proc. Of the 24th

Annual Conference of the IEEE Industrial Electronics [15] L. Liu, J. Layland, Scheduling algorithms for

Society (IECON), vol. 1, pp. 214-219, Aachen, multiprogramming in a hard real-time environmént

Germany, 31 Aug. - 4 Sept. 1998. Journal of the ACM (JACM) 20, 1, pp. 46-61, 1973.
[14] L. Lo Bello, A. Gangemi, A slot swapping protocol for [16] OMNeT++ Network Simulator Framework.

time-critical internetworking Journal of Systems

Architecture, vol. 51, pp. 526-541, Elsevier, 2005.

